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Abstract

This study investigates the relationship between charging infrastructure

proximity and BEV adoption in Norway at the municipal level. Corre-

lation analysis identifies significant associations between BEV share and

income, education, electricity prices, and population density. Geospatial

regression analysis reveals robust and statistically significant impacts

for both registered and proximity points, using three different radii and

three different model specifications. The results show that the impact

of registered points is stronger than that of proximity points when the

buffer zone radius is set to 10 kilometers, but this relationship reverses

when the radius is increased to 20 kilometers. These findings highlight

the importance of addressing range anxiety in promoting BEV adoption

and emphasize the positive influence of charging infrastructure proxim-

ity as the buffer zone distance increases.

Keywords : Battery Electric Vehicles (BEVs), charging infrastructure,

BEV adoption, range anxiety, correlation analysis, geospatial regression,

proximity points, registered points, income, education, electricity prices,

population density, municipal level, Norway.
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1 Introduction

In the fight against climate change, reduction in CO2 emissions from road transport

stands as a crucial factor. Recognizing its significance, we have chosen to focus our

investigation on the Norwegian Battery Electric Vehicle (BEV) market. The success

of Norway’s market for BEVs has been nothing short of remarkable. In April 2023,

the country achieved a groundbreaking milestone, with over 90% of all cars sold

being BEVs [5]. This exceptional achievement can be attributed to a combination of

factors, including the effective policies implemented by the Norwegian government.

Notably, Norway was one of the first countries to introduce tax incentives for BEV

purchases, which played a significant role in driving up demand [12]. However, one

of the most influential policies that contributed to the success of BEVs in Norway is

the establishment of a robust charging infrastructure network.

Ensuring widespread accessibility to charging points throughout the country has

been instrumental in making BEVs a viable option for Norwegian consumers. Nor-

way’s unique geographical characteristics, such as long distances and extreme cold

weather conditions, have traditionally contributed to range anxiety, making poten-

tial BEV owners hesitant. However, by strategically installing charging infrastruc-

ture and providing easy access to charging points, the Norwegian government and

private firms have successfully alleviated these concerns and created an enabling

environment for BEV adoption.

In our research, we place a particular focus on the geospatial analysis of charging

infrastructure and its impact on BEV adoption in Norway. By incorporating geospa-

tial computations and employing buffer zone calculations, we are able to quantify

the accessibility of charging points for each municipality. This approach allows us

to examine the spatial distribution of charging infrastructure and its influence on

BEV adoption patterns across the country. Furthermore, to analyze the factors in-

fluencing the establishment of registered points, we constructed a secondary model

incorporating the BEV share and the proximity of charging points, along with the

relevant covariates.

Moreover, we consider the demographic and geographic characteristics of munic-

ipalities to gain a comprehensive understanding of the factors influencing BEV

adoption. By analyzing how factors such as population density, income levels, ed-

ucation, and electricity prices correlate with BEV adoption rates, we aim to pro-

vide valuable insights into the drivers of BEV uptake in different regions of Nor-

way.
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To enhance the robustness of our analysis, we employ a combination of geospatial

analysis and econometric methods. By integrating these approaches, we can capture

the complex relationships between charging point proximity, demographic variables,

and BEV adoption. Additionally, we incorporate lags in our regression models to ad-

dress potential endogeneity issues and capture the dynamic nature of the relationship

between charging infrastructure and BEV adoption over time.

Our research builds upon previous studies in the field. In particular, we draw inspira-

tion from the work of Reinertsen and Recusani in their study on “Public and Private

Investment in BEV Charging Infrastructure and Spillover Effects” [16]. While their

Master’s project provided valuable insights into the initial patterns of investment and

BEV adoption, our current research takes a distinct path. We aim to estimate the

causal relationship between proximity points and the change in the share of BEVs,

utilizing a different dependent variable, a different model specification, and incorpo-

rating additional data from the year 2009. Furthermore, we focus on a smaller subset

of 295 municipalities to investigate potential spillover effects.

By integrating geospatial analysis techniques with econometric modeling, our re-

search aims to provide a comprehensive and nuanced analysis of the role of charging

infrastructure in BEV adoption and shed light on investment patterns in Norway’s

charging points. The findings from our study have important implications for pol-

icymakers, industry stakeholders, and researchers seeking to promote sustainable

transportation and inform strategic decision-making in the field of electric vehicle

infrastructure.

2 Literature Review

Our study aims to make a significant contribution to the existing literature on the

Norwegian battery electric vehicle (BEV) market by investigating the impact of

charging point proximity on BEV adoption in Norwegian municipalities. Norway

has garnered international attention for its remarkable success in BEV adoption,

largely attributed to the government’s long-standing support and favorable poli-

cies [7]. However, the availability of reliable and accessible charging infrastruc-

ture remains a critical factor in facilitating the widespread adoption of BEVs [14]

[18].

Charging infrastructure plays a pivotal role in overcoming the psychological barrier

of range anxiety, which refers to the fear of running out of battery charge and
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being stranded without a charging option, even when the battery still has significant

remaining autonomy. [15] [6] [10]. These barriers are most challenging to cross in

such a cold country, where batteries are very likely to underperform. Mashoodi

and van der Blij [11] have demonstrated that this fear may necessitate a substantial

increase of charging points by 167% in the charging infrastructure of Amsterdam.

However, as the number of charging points increases, we anticipate that this type

of anxiety can be alleviated, potentially leading to even greater spillover effects.

Our study is conducted in a context where charging points are densely distributed

across the territory, allowing us to explore the relationship between charging point

proximity and BEV adoption more comprehensively.

By ensuring convenient access to charging points, potential BEV owners can gain

the confidence to make the transition from traditional gasoline-powered vehicles to

electric vehicles. This aspect has been recognized by governments and businesses

worldwide, leading to significant investments in the development of charging infras-

tructure, including public charging stations in urban areas and along major highways

[14] [18].

The cultural significance of cabins in Norway, with around 43% of the population

having access to one, has played a pivotal role in shaping our geospatial analysis

[1]. Understanding Norwegians’ attachment to these cabins further emphasizes the

importance of charging infrastructure in neighboring municipalities. This aspect of

range anxiety, related to safely reaching remote cabin locations and finding reliable

electricity, highlights the necessity of addressing charging infrastructure concerns

to facilitate the widespread adoption of sustainable transportation options in the

country [13].

While efforts have been made to study the impact of publicly available charging

infrastructure [17], little is known still about the spillover effects due to installations

in neighbouring municipalities. Reinertsen and Recusani[16] used two different mod-

els to try and quantify such effects. They find conflicting results relative to their

magnitude and direction. Additionally, while they do manage to reduce this con-

cern, they never apply a specification that completely excludes endogeneity, and

thus they cannot claim causality. Our aim is to expand on their research, using

a specification that prevents endogeneity, and to accurately quantify spillover ef-

fects.

In the context of Norway, the charging infrastructure ecosystem has evolved to en-

compass various types of charging, including home, workplace, and public charging
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options [9] [8] [17]. Our research specifically focuses on the impact of charging

points located in municipalities’ proximity, on BEV adoption in Norwegian munic-

ipalities. By considering the geographic distribution of charging points, we aim to

provide valuable insights into the role of infrastructure in promoting the adoption

of sustainable transportation options.

Furthermore, our study takes into account the unique demographic characteristics of

Norwegian municipalities and their potential influence on BEV adoption patterns.

In particular, Norway has an outstandingly homogeneous distribution of income

and high levels of education, attributes which might contribute to the success of

electric mobility. By analyzing the demographic attributes of municipalities, we

seek to identify additional factors that may shape the relationship between charging

point proximity and BEV adoption. Understanding these contextual factors can help

policymakers and stakeholders in developing effective strategies to further encourage

BEV adoption and create a sustainable transport ecosystem.

In summary, our research endeavors to advance the understanding of the Norwe-

gian BEV market by investigating the impact of charging point proximity on BEV

adoption in municipalities. Through a comprehensive analysis that incorporates ge-

ographic considerations, we aim to provide valuable insights into the role of charging

infrastructure in promoting the widespread adoption of BEVs, contributing to the

ongoing global transition towards sustainable transportation.

3 Data

To construct our panel data for analysis, we collected data from NOBIL [2], the Nor-

wegian National Statistics website [4], the UC Davis database of global administra-

tive areas (GADM) [19], and Nordpool [3]. These sources provided crucial informa-

tion that contributed to the comprehensive nature of our study.

The NOBIL dataset proved invaluable in providing detailed information about regis-

tered charging stations in Norway. It furnished us with precise spatial positions and

exact date of establishment for each charging station. While the exact construction

dates were not available, we used the time of addition to the NOBIL database as a

proxy. Since NOBIL was established in March 2010, we made the assumption that

charging points registered between March and May 2010 were already established in

2009. We make the assumption that these charging stations were established in 2009

because the government announced their plan to establish charging infrastructure
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across the country in 2008. Thus, for our analysis, we included data spanning from

2009 to 2022.

Demographic data for the municipalities and the dependent variable, BEV share,

were obtained from Statistics Norway. The registered vehicles dataset provided

information on the number of cars registered by fuel type in each municipality,

allowing us to calculate the BEV share. Our demographic variables encompassed

population density, median household income, educational attainment, and average

age at the municipality level.

Furthermore, we acquired a dataset from Nordpool, which operates Europe’s leading

power market. This dataset offered insights into monthly electricity prices between

2009 and 2022 for different regions, namely NO1-NO5, representing North, West,

South, East, and Middle regions in Norway. Notably, the southern regions experi-

enced higher electricity prices following the Ukrainian war due to their connection

to separate grids. This additional data facilitated further comparisons at a more

aggregated level.

Figure 1

Notes: 295 out of 356 municipalities in Norway were included in our analysis.
Changes in municipal borders resulted in data deficiencies in the shapefile used for
the analysis. The blue municipalities on the map indicate those included in the
analysis, while the white ones were not used due to data limitations.
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To complement our panel data, we utilized raster data from the UC Davis GADM

database. However, it is important to acknowledge that the raster data we obtained

did not reflect the current municipal boundaries due to municipal mergers and sep-

arations over time. As seen in figure 1, to ensure the accuracy of our analysis, we

excluded 61 municipalities from our dataset, focusing on 295 municipalities that

accurately represented the current administrative boundaries. This allowed us to

conduct a robust examination of the relationship between charging point proximity

and BEV adoption in the Norwegian context.

In our data section, we distinguish between two types of charging points that may

impact the demand for BEVs in a municipality: registered points and proximity

points. Registered points correspond to the original NOBIL specification, where a

charging point is registered in the municipality within whose geographical area it

falls.

To create the dataset for proximity points, we followed a specific procedure. First, we

split the NOBIL points into different datasets using R. Next, we uploaded these CSV

files as delimited text files in QGIS. For each charging point, we created a buffer zone

around it with radii of 10, 15, and 20 km. The selection of 10km, 15km, and 20km as

the buffer zone radii in our analysis is based on the national average daily travel dis-

tance in Norway, which is approximately 31 km [4]. Then, we joined the buffer zone

layers with the raster data by utilizing the intersect function, which allowed us to

identify every point registered in all municipalities it intersected with. Subsequently,

we saved these joined layers as CSV files in three separate folders, each represent-

ing a different buffer zone radius. Finally, using R, we merged the datasets and

performed necessary computations to generate new variables.

This process resulted in a dataset encompassing the cumulative number of registered

points and proximity points for each municipality from 2009 to 2022. By incorpo-

rating both registered and proximity points, we aimed to capture a comprehensive

picture of the charging infrastructure and its potential influence on BEV demand at

the municipality level.

As seen in table 1, the number of municipalities that have proximity to charging

infrastructure is much higher in the first years of the dataset, while the numbers

converge towards the end of the time period.

As depicted in Figure 2, the BEV share trend reveals an interesting pattern. Despite

the “No Registered Points” group of municipalities, which never received charging

points within their borders, exhibiting relatively lower BEV shares throughout the
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dataset’s time span, they still demonstrate a positive BEV share. Remarkably,

these municipalities are not far behind the counterparts with one or more registered

charging points. This intriguing observation serves as a motivation for our geospatial

analysis, as it suggests the presence of potential spillover effects among municipali-

ties. We hypothesize that the proximity of charging points to a given municipality

may alleviate range anxiety and enhance BEV mobility, influencing their adoption

rates.

In summary, our study relied on data from NOBIL, the Norwegian National Statis-

tics website, GADM, and Nordpool, as well as the foundational research by Reinert-

sen and Recusani, to construct a comprehensive panel dataset. These data sources

provided essential information on charging infrastructure, demographics, electric-

ity prices, and administrative boundaries, enabling us to investigate the relation-

ship between charging point proximity and BEV adoption in the Norwegian BEV

market while expanding upon previous work and exploring potential spillover ef-

fects.

Table 1: Number of Municipalities with 1 or more charging points by Year and Specifi-
cation

Year Registered points 10km 15km 20km
2009 83 143 160 179
2010 90 146 161 181
2011 94 150 165 184
2012 112 162 177 198
2013 132 180 195 213
2014 152 199 218 235
2015 167 216 232 244
2016 183 227 240 252
2017 200 242 251 261
2018 220 249 257 265
2019 230 253 260 268
2020 242 268 274 281
2021 251 275 280 285
2022 256 278 280 285

No points 39 17 15 10

Notes: The table compares the number of municipalities that have 1 or more
charging points by specification. The columns represent the Registered point, 10km,
15km, and 20km specification. There are 295 municipalities in total.
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Figure 2

Notes: Figure 2 illustrates the average share of Battery Electric Vehicles (BEVs)
over the years, with the municipalities grouped based on the number of registered
charging points in 2022.

Figure 3

Notes: Figure 3 illustrates the average share of Battery Electric Vehicles (BEVs)
per municipality and the number of EV charging points in Norway in the year 2010.
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Figure 4

Notes: Figure 4 illustrates the average share of Battery Electric Vehicles (BEVs)
per municipality and the number of EV charging points in Norway in the year 2022.

Figure 5 Figure 6

Notes: Figures 5 and 6 show the average share of Battery Electric Vehicles (BEVs)
per municipality and the number of BEV charging points in Oslo and its
surroundings for the year 2010 and 2022. The two figures also display the
Norwegian national and regional road network in light grey.
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4 Empirical Methods

4.1 Correlation Analysis

In this study, we first conduct a correlation analysis between the variable of inter-

est, BEV share, and other variables in our dataset. The objective is to examine

the strength and direction of the relationships between BEV share and the other

variables from our panel data. We set a significance threshold of 0.05 for the maxi-

mum p-value to identify statistically significant correlations. This analysis provides

valuable insights into the associations between BEV share and other variables, shed-

ding light on potential factors that may influence the adoption and usage of electric

vehicles. The analysis uses the years 2009-2022.

4.2 Geospatial Baseline Model

In our analysis, we investigate the spillover effects between municipalities, and the

influence charging points have on Battery Electric Vehicle (BEV) demand in munici-

palities. We differentiate between Registered and Proximity points.

The panel data analysis employs a regression model with the BEV share as the

dependent variable. The model incorporates fixed effects for municipality and year,

along with other relevant demographic variables. We will use the correlation anal-

ysis to determine which demographic variables to control for in our analysis. By

examining the regression results, we can assess the impact of proximity to charging

points on BEV adoption while controlling for demographic factors. The model uses

data from 2009-2022.

The baseline specification for our Fixed Effects Panel Data Model to examine the

relationship between proximity to charging points and BEV adoption in Norway’s

municipalities is as follows:

∆BEV sharei,t = β0+ηi+θt+β1·Registered pointsi,t−1+β2·Proximity pointsi,t−1+εi,t

where:

• ∆BEV sharei,t represents the change in share of electric vehicles in munici-

pality i from time t− 1 to time t.
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• η is the fixed effect by municipality,

• θ is the fixed effect by year,

• Registered points is the cumulative sum of charging points registered to mu-

nicipality i in year t− 1

• Proximity points is the cumulative sum of the buffer charging points in the

given proximity (10, 15, 20km) to municipality i in year t− 1

• εi,t is the error term.

4.3 Geosptial Model and Causality

Two elements constituted a threat to the soundness of our study: endogeneity and

the powerful mix of policies in order to promote BEV adoption implemented in

Norway.

The first is a common concern in studies on the relationship between charging points

and BEVs : while it is clear that the former affect the latter, there can also be some

reverse causality. While second element is an undisputed asset in Norway’s race to

a net-zero car market, it is a challenge, from an econometric point of view: if we are

unable to accurately isolate the effect of charging infrastructure from these policies,

our results might be biased.

These concerns led us to our choice of the econometric model. By picking as our

dependent variable the change in percentage of registered BEVs and using as re-

gressors the lagged cumulative number of registered and proximity charging points,

we avoid endogeneity; in fact, it would be impossible for our dependent variable to

directly affect the number of charging points within the same period. This allows us

to infer a causal relationship. Additionally, we believe that using lagged regressors

has another advantage: it allows us to take into account the fact that decisions

relative to purchasing a car, and even more so an Electric Vehicle, is rarely imme-

diate or impulsive, and that turnover of cars is rather slow. We expect additional

charging points to have effects on uptake only after some time; this is perfectly rec-

onciled with our choice of control variables. We include time and municipality fixed

effects, which we believe will enable us to capture the effects of policies that were

applied nation-wide and might have influenced BEV uptake, consider market-cycles,

as well as local characteristics that might influence uptake in some municipalities.
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By incorporating fixed effects for municipality and year, along with relevant demo-

graphic variables, we examine the affect of Registered and Proximity points on BEV

adoption.

4.4 Geosptial Model 2.0

After conducting our first geospatial analysis, our final aim is to examine the rela-

tionship between proximity points in time period t-1 and the corresponding regis-

tered points in time period t. Specifically, we aim to investigate whether an increase

in proximity points from the previous year is associated with an increase or decrease

in registered charging points. By analyzing this relationship, we can gain insights

into how the availability of charging infrastructure, as measured by proximity points

in the previous time period, influences the establishment of charging points in dif-

ferent municipalities.

∆Registered Pointsi,t = β0+ηi+θt+β1 ·BEV sharei,t−1+β2 ·Proximity pointsi,t−1

+β3 · Incomei,t + β4 ·Densityi,t + β5 · Electricity pricei,t + β6 · Educationi,t + εi,t

where:

• ∆Registered Pointsi,t represents the change in registered electric vehicles in

municipality i from time t− 1 to time t.

• η is the fixed effect by municipality,

• θ is the fixed effect by year,

• BEV share is the share of BEVs in municipality i in year t− 1

• Proximity points is the cumulative sum of the buffer charging points in the

given proximity (10, 15, 20km) to municipality i in year t− 1

• Densityi,t represents the density in municipality i in year t.

• Educationi,t represents the education level in municipality i in year t.

• Electricity pricei,t represents the electricity price in municipality i in year t.

• Incomei,t represents the income level in municipality i in year t.

• εi,t is the error term.
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5 Results

5.1 Correlation Analysis

In Figure 4, we observe significant relationships between our selected variables and

the dependent variable, BEV share. Among these variables, Income exhibits the

highest correlation with a coefficient of 0.706, indicating a strong positive relation-

ship. This finding aligns with our expectations as higher income levels are often

associated with increased purchasing power and a greater likelihood of affording

electric vehicles. Additionally, Education shows a strong relationship, suggesting

that individuals with higher education levels may be more inclined to adopt elec-

tric vehicles. The impact of education on BEV share can be further explored by

considering factors such as environmental awareness, technological familiarity, and

sustainability values.

Another noteworthy variable is Electricity prices, which demonstrates one of the

strongest correlations with BEV share. This finding is logical since electricity prices

directly impact the overall cost of driving a car after its purchase. Higher electricity

prices may discourage the adoption of electric vehicles due to concerns about ongoing

expenses. On the other hand, lower electricity prices could incentivize potential BEV

owners by reducing the cost of usage.

Interestingly, Population density shows a stronger relationship with BEV share com-

pared to Population alone. This finding suggests that the concentration of popula-

tion in a specific area influences the adoption of electric vehicles more significantly

than the overall population size. Potential explanations for this relationship could

include accessibility to charging infrastructure, availability of public transportation

alternatives, and the presence of supportive policies or initiatives in densely popu-

lated areas.
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Figure 7

Notes: Figure 7 illustrates the correlation analysis we conducted of the relationship
between BEV share and relevant variables in our dataset

Furthermore, we find that the cumulative proximity points of all radii exhibit a

stronger correlation with BEV share than the cumulative registered points. This

disparity suggests that the proximity points, which consider mobility beyond imme-

diate travel distances, have a greater impact on BEV adoption by alleviating range

anxiety. In contrast, the registered points within close proximity may have a more

limited influence on driving BEV adoption.

5.2 Geospatial Regression with Lags

Table 2 presents the results of a buffer zone comparison for three different panels

(Panel 1, Panel 2, and Panel 3) with fixed effects and covariates. The analysis

explores the effects of different buffer zone distances (10km, 15km, and 20km) on

BEV adoption while accounting for panel-specific factors and other relevant vari-

ables.

To account for panel-specific characteristics that may affect the change in BEV share

within the buffer zone, fixed effects are included in the analysis. This helps con-

trol for any inherent differences across the panels. Furthermore, covariates such as

Density, Income, Electricity Price, and Education are incorporated to capture addi-

tional factors that could potentially influence the dependent variable. The selection
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of these covariates in panel 3 was based on the correlation analysis conducted in sec-

tion 6.1, ensuring that relevant variables are included to provide a comprehensive

analysis.

Table 2: Buffer Zone Comparisons with lags and ∆BEV Share as dependent variable

Dependent Variable ∆BEV Share

Distance Panel 1 Panel 2 Panel 3

10km
Lag(Registered points) 0.008∗∗∗ 0.007∗∗∗ 0.003∗∗∗

(0.0002) (0.0002) (0.0003)
Lag(Proximity points) 0.005∗∗∗ 0.004∗∗∗ 0.002∗∗∗

(0.0002) (0.0002) (0.0002)
R2 0.652 0.675 0.733

Observations 2,943 2,943 2,782

Mean BEV share 0.0105 0.0105 0.0107

15km
Lag(Registered points) 0.007∗∗∗ 0.006∗∗∗ 0.003∗∗∗

(0.0002) (0.0002) (0.0003)
Lag(Proximity points) 0.006∗∗∗ 0.005∗∗∗ 0.003∗∗∗

(0.0002) (0.0002) (0.0002)
R2 0.673 0.694 0.739

Observations 2,967 2,967 2,806

Mean BEV share 0.0105 0.0105 0.0107

20km
Lag(Registered points) 0.005∗∗∗ 0.005∗∗∗ 0.003∗∗∗

(0.0002) (0.0002) (0.0003)
Lag(Proximity points) 0.007∗∗∗ 0.007∗∗∗ 0.003∗∗∗

(0.0002) (0.0002) (0.0003)
R2 0.685 0.705 0.739

Observations 2,967 2,967 2,806

Mean BEV share 0.0105 0.0105 0.0107

Covariates
Electricity Price No Yes Yes

Density No No Yes
Income No No Yes

Education No No Yes

Fixed Effects Yes Yes Yes
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: Table 2 presents a comparison of buffer zones at three different distances (10km,
15km, and 20km) and explores the impact of including covariates (Electricity Price,
Density, Income, and Education) in the model specification.

The coefficients presented in the table represent the estimated effects of the vari-

ables on our dependent variable, ∆BEV Share. Specifically, the coefficients for

“Lag(Registered points)” and “Lag(Proximity points)” indicate the impact of the
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standardized number of charging points registered and the standardized number of

charging points within the buffer zone in year t-1, respectively, on the change in

BEV share.

The results in the table provide valuable insights into the relationship between buffer

zone distances and BEV adoption, while taking into account panel-specific factors

and other relevant variables. The consistent and significant positive coefficients

across different panels and buffer distances demonstrate the robustness of our find-

ings, indicating that proximity to charging infrastructure has a reliable and positive

effect on BEV adoption.

Looking at the table, we observe that the estimates for proximity points increase as

the buffer zone distance expands. This suggests that having charging infrastructure

within a larger radius positively influences BEV adoption. As the distance increases,

more BEV owners have access to a greater number of charging points, which can

alleviate their concerns about range anxiety and contribute to their decision to adopt

BEVs.

On the other hand, the estimates for registered points decrease as the buffer zone

distance increases. This implies that the specific charging points registered within

the buffer zone have a relatively smaller impact on BEV adoption as the prospec-

tive travel distance expands. Other factors, such as proximity to charging in-

frastructure in neighboring areas, become more influential in driving BEV adop-

tion.

One possible explanation for this pattern is that as the buffer zone distance increases,

our analysis considers a larger number of proximity points. These proximity points

capture spillover effects from charging infrastructure located near the buffer zone but

outside of the specific registered points. By incorporating a broader geographical

area, we account for a wider range of factors that contribute to BEV adoption and

capture the variation attributed to these spillover effects.

The findings presented align with existing research on BEV charging infrastruc-

ture and contribute to the understanding that range anxiety plays a significant role

in shaping users’ confidence in the ability of BEVs to meet their travel require-

ments beyond short distances. These results underscore the importance of address-

ing range anxiety as a crucial factor in promoting wider acceptance and usage of

BEVs.
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5.3 Geospatial 2.0

After conducting a second geospatial analysis, we present the results in Table 3

below. Our subsequent analysis revealed significant coefficients for both Proximity

points and BEV share in year t-1. However, it is important to note that the overall

explanatory power of the model is relatively weak.

Table 3: Buffer Zone Comparisons with lags and ∆Registered Points as dependent vari-
able

Dependent Variable ∆Registered Points

Distance 10km 15km 20km

(1) (2) (3)

Lag(BEV share) 5.267∗∗∗ 4.789∗∗∗ 4.484∗∗∗

(1.037) (1.012) (1.001)

Lag(Proximity points10) 3.959∗∗∗

(0.633)

Lag(Proximity points15) 4.807∗∗∗

(0.756)

Lag(Proximity points20) 5.543∗∗∗

(0.912)

Electricity price 0.326 0.305 0.252
(0.465) (0.455) (0.451)

Density 1.646∗∗∗ 1.819∗∗∗ 1.920∗∗∗

(0.517) (0.511) (0.505)

Educ -1.465 -1.736 -1.738
(1.493) (1.474) (1.447)

Income -1.552 -1.986 -2.618
(1.606) (1.595) (1.600)

Observations 2,996 3,050 3,077
R2 0.073 0.072 0.071
Adjusted R2 -0.017 -0.018 -0.020
F Statistic 35.658∗∗∗ 36.050∗∗∗ 35.480∗∗∗

(df = 6; 2731) (df = 6; 2780) (df = 6; 2804)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The coefficients indicate that an increase in proximity points from the previous year

is associated with a positive change in Registered points. Additionally, a higher BEV
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share in the previous year is also positively associated with an increase in registered

points. The coefficients for the covariates are not significant, with the exception of

Density, which shows a positive relationship with BEV share. These findings suggest

that the availability of charging infrastructure, as measured by proximity points,

and the previous adoption level of BEVs play a role in the decision to establish new

registered charging points in municipalities.

6 Discussion

6.1 Proximity Point Calculations: Efficiency Gains

While creating the variable for proximity points, we followed a procedure involving

the creation of buffer zones around each charging point and intersecting them with

the respective municipality borders. However, upon careful evaluation and with the

guidance of our professor, we recognized that an alternative method where we create

buffer zones around each municipality would likely have been more efficient in terms

of computational resources and processing time.

By generating buffer zones around each municipality instead of each individual

charging point, we could have significantly reduced the number of spatial inter-

sections and computations required. This approach would have allowed for more

streamlined data processing and quicker analysis.

Nevertheless, despite the potential efficiency gain of the alternative method, we pro-

ceeded with our initial approach as it ultimately yielded comparable results. The

process of creating buffer zones around each charging point with varying radii of 10,

15, and 20 km allowed us to investigate the impact of charging infrastructure at dif-

ferent distances on BEV adoption, providing valuable insights into the role of prox-

imity in addressing range anxiety and promoting BEV uptake.

6.2 Correlation Analysis

Our analysis revealed several significant findings. Firstly, there is a strong positive

correlation between Income and BEV share, indicating that higher income levels

contribute to greater electric vehicle adoption. This aligns with countries like Nor-

way, known for their high average incomes and favorable wealth distribution, where

a larger proportion of the population can afford BEVs. Secondly, Education is
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positively correlated with BEV share, suggesting that individuals with higher edu-

cation levels are more inclined to adopt electric vehicles, possibly due to factors such

as environmental awareness and technological familiarity. Additionally, Electricity

prices demonstrate a strong correlation with BEV share, as they directly influence

the cost of operating electric vehicles. Higher electricity prices may deter adoption,

while lower prices can incentivize potential owners. Lastly, Population density has

a stronger relationship with BEV share than overall Population, implying that con-

centrated areas influence electric vehicle adoption more significantly. Factors such

as charging infrastructure, public transportation options, and supportive policies

play a role in this relationship.

The finding that proximity points consistently exhibited a higher correlation with

BEV share compared to registered points across all radii suggests that spatial prox-

imity plays a crucial role in influencing BEV adoption. This discrepancy suggests

that the proximity points, which take into account mobility beyond immediate travel

distances, have a more significant impact on BEV adoption by addressing concerns

related to range anxiety. In contrast, the registered points within close proximity

may have a more limited influence on driving BEV adoption. This implies that the

availability of charging infrastructure and supportive services in broader geographic

areas plays a crucial role in alleviating range anxiety and promoting the adoption

of electric vehicles.

6.3 Geospatial Regression with Lags

The results of our analysis reveal that proximity to charging infrastructure has a

positive effect on BEV adoption, as indicated by the significant and positive coef-

ficients for both registered points and proximity points. The findings suggest that

having charging points within a larger buffer zone increases BEV adoption, poten-

tially reducing range anxiety and boosting confidence in the availability of charging

infrastructure.

The decreasing estimates for registered points imply that factors beyond the specific

registered charging points, such as proximity to charging infrastructure in neighbor-

ing areas, play a more influential role in driving BEV adoption. This highlights the

importance of considering spillover effects and broader geographical areas in analyz-

ing BEV adoption patterns. These findings also stress the importance of accounting

for spillover effects in studies on range anxiety, and that distance to charging infras-
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tructure seems to be more important than whether there is charging infrastructure

within the borders.

6.4 Geospatial 2.0

Our analysis reveals that both proximity points and the previous year’s BEV share

have significant coefficients in predicting the establishment of new registered charg-

ing points. These findings emphasize the importance of accessible charging infras-

tructure and the existing adoption level of electric vehicles in driving the expansion

of registered points. However, it is important to recognize that the model’s explana-

tory power is limited, indicating that there are likely other factors influencing the

establishment of new registered points that are not captured in our current model.

Factors such as policy incentives, market demand, and specific local conditions may

also contribute to these decisions. Therefore, while the coefficients provide valuable

insights, they should be interpreted with caution, and further research is needed to

fully understand the determinants of new registered charging points in municipali-

ties.

7 Conclusions

In conclusion, our study focused on the adoption and usage of Battery Electric

Vehicles in Norwegian municipalities, emphasizing the role of charging infrastructure

and proximity points. Our analysis provided valuable insights into the key factors

driving BEV adoption.

The results highlight the significance of charging infrastructure and spatial proximity

in influencing BEV adoption. Accessible charging points within proximity played a

crucial role in adoption, surpassing registered points and addressing range anxiety.

Higher income and education levels were found to positively impact adoption, while

higher electricity prices were an obstacle.

With our chosen specification, we aimed to minimize biases and isolate the effect of

spillover effects. The analysis consistently showed that proximity points positively

influenced BEV adoption, with larger buffer zones capturing more of the impact on

BEV adoption.
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The findings underscore the need for policymakers to expand charging infrastructure

networks to enhance the confidence and convenience of potential BEV owners. Ad-

dressing range anxiety through accessible charging points beyond immediate travel

distances is crucial for promoting BEV adoption.

While our study contributes valuable insights, there are limitations to our models

and opportunities for further research to explore the impact of specific policies on

BEV adoption. Future studies could also assess alternative proximity point calcu-

lations for increased efficiency.

Our secondary model revealed a positive influence of both the BEV share and

proximity points on the establishment of registered points; however, we acknowl-

edge the limited explanatory power of the model, that indicates its inability to

account for a significant portion of the variation in the establishment of registered

points.

In summary, our study expands the understanding of the factors driving BEV adop-

tion in Norway. The findings emphasize the importance of charging infrastructure

and spatial proximity, providing guidance for policymakers and stakeholders aiming

to accelerate the transition to a sustainable and decarbonized transportation system

powered by electric vehicles.
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